P-3

ON THE STRUCTURAL EFFECTS OF CF₃ GROUPS

Heinz Oberhammer

Universität Tübingen, Tübingen (F.R.G.)

Based on gas phase molecular structures for a series of molecules containing CF_3 groups, some general effects of these groups on the molecular geometries are observed. Systematic trends of CH_3/CF_3 substitution on bond lengths and bond angles are discussed. Variations of bond lengths upon CF_3 substitution are correlated with the "effective" electronegativity of the adjacent group. In sulfur compounds S-CF₃ bond lengths depend strongly on the sulfur oxidation number. The effect of CF_3 groups on the stereochemistry of trigonal bipyramidal molecules depends on the central atom. Examples for trifluoromethyl sulfur fluor-ides, trifluoromethyl fluoro phosphoranes and trifluoromethyl chloro phosphoranes are presented. Simple bonding models are suggested to rationalize the structural effects of CF_3 groups.

P-4

STRUCTURAL, VIBRATIONAL AND THERMODYNAMIC STUDIES OF PENTÁFLUOROGERMANATE SALTS

T. Mallouk*, B. Desbat and N. Bartlett

Chemistry Department and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (U.S.A.)

The crystal structures of two $A^{+}GeF_{5}^{-}$ salts (A = XeF₅, ClO₂), coupled with vibrational studies of these and other salts (A = NO₂, SF₃, Bu₄N), show that the anion has at least four different structural forms. In XeF₅⁺GeF₅⁻ the anion consists of infinite chains of trans-bridged GeF₆ octahedra with a Ge-F-Ge angle of 141°; ClO₂⁺GeF₅⁻ contains cis-bridged chains with corresponding angles of 143° and 148°. The Raman and infrared spectra confirm earlier studies¹ that GeF₅⁻ exists as a monomer of D_{3h} symmetry in Bu₄N⁺GeF₅⁻. In NO₂⁺GeF₅⁻ a polymeric form different from those found in ClO₂⁺GeF₅⁻ and XeF₅⁺GeF₅⁻ must occur.

The enthalpies of formation of $\text{ClO}_2^+\text{GeF}_5^-$ and $(\text{SF}_3^+)_2\text{GeF}_6^{2-}$ (the structure of which will be described) were determined from $\ln K_p$ vs. 1/T plots; from lattice energy evaluations of these salts (based upon a Madelung energy obtained by the method² of Bertaut) the first and second fluoride ion affinities of GeF4 have been determined: $\Delta H(\text{GeF}_4(g) + F^-(g) = \text{GeF}_5^-(g)) = -101$, $\Delta H(\text{GeF}_5^-(g) + F^-(g)) = -91$, and $\Delta H(\text{UF}_6(g) + e^- = \text{UF}_6^-(g)) = -133$ kcal mole⁻¹.

1 I. Wharf and M. Onyszchuk, Can. J. Chem., <u>48</u>, 2250 (1970).

2 F. Bertaut, <u>J. Phys. Radium</u>, <u>13</u>, 499 (1952).